If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+10=700
We move all terms to the left:
2x^2+10-(700)=0
We add all the numbers together, and all the variables
2x^2-690=0
a = 2; b = 0; c = -690;
Δ = b2-4ac
Δ = 02-4·2·(-690)
Δ = 5520
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{5520}=\sqrt{16*345}=\sqrt{16}*\sqrt{345}=4\sqrt{345}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{345}}{2*2}=\frac{0-4\sqrt{345}}{4} =-\frac{4\sqrt{345}}{4} =-\sqrt{345} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{345}}{2*2}=\frac{0+4\sqrt{345}}{4} =\frac{4\sqrt{345}}{4} =\sqrt{345} $
| 40+(=9+2c | | 1-5r+7=3 | | 12=4x/24+6 | | 4n+25+3n+22=180 | | 1200=1.4j | | 6x+30=2x+10+4x+32 | | 4x=13.2 | | 14x+43+25x=219 | | g(2)=(2)^3+7 | | 5x-8+3x=-88 | | 2+30x=202 | | 4.5/20=x/32 | | 122+c=182 | | 3x-15+10=25 | | 5(6x+1)-3(4x+3)=43 | | -3x+5x+12=6 | | -2.7x^2+40x+6.5=12 | | g(1)=(1)^3+7 | | 5(4-y)+(3y+1)=27 | | 7(4v+4)=-7-7v | | 7/9+5x=367/9 | | 5+25=-3(6x-10) | | 5x+12=-28 | | $250+$14h=22h | | 32+m=50 | | -2.71x^2+40x+6.5=12 | | 27=11+2x | | 7(6x-1)+2=42x-5 | | -7x-6+5x=-18 | | 5k+4=9+2(k-3} | | g(0)=(-0)^3+7 | | -6(k+D=-3(-6k+3 |